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ABSTRACT

The purpose of this research was to investigate a potential new

radar parameter for measuring rainfall, namely the summation of the

phase shifts at horizontal and vertical polarizations, (_H+_V), due

to propagation through precipitation. The proposed radar technique has
several potential advantages over other approaches because it is

insensitive to the drop size distribution and to the shapes of the

raindrops. Such a parameter could greatly assist the development of
satellite rainfall estimation algorithms by providing comparative

measurements near the ground. It could also provide hydrologically

useful information for such practical applications as urban hydrology.

Results of this investigation showed, however, that (_H+_V) can

not be measured by radar. However, a closely related radar parameter

[propagation differential phase shift, (_H-_V)] can be readily measur

using a polarization diversity radar. While it too is insensitive to

the drop size distribution, it is a function of the mean shape of the

raindrops. This dependence of (_H-_V) on raindrop shape, however, can

be accounted for when estimating the rain water content (W) by using

simultaneously measured differential reflectivity and the magnitude of
the cross-correlation function between horizontally and vertically

co-polarized backscattered waves. Differential propagation phase shift,
therefore, has the potential to be an important new tool for the radar
measurement of rainfall.

It is recommended that propagation differential phase shift be

further investigated and developed for radar monitoring of rainfall

using a polarization agile radar such as that at Deutsche Forchungs-
und Versuchsanstalt fur Luft- und Raumfahrt in the Federal Republic of

Germany.

It is further recommended that a prototype multiple frequency
microwave link be constructed for attenuation measurements not possible

by existing radar systems. Both approaches can potentially provide the
necessary data for improving our fundamental understanding of the

physics and the limitations of the measurement of precipitation through

remote sensing. Such knowledge will not only promote the formulation of

better algorithms for precipitation measurement from satellites, but it

can also potentially provide better rainfall measurements for

hydrological applications especially in locations where the placement
of raingage networks is logistically or fiscally impractical.



i. Introduction

The improved measurement of rainfall is not only important to many

human activities such as agriculture and urban hydrology, but it is
also vital for advancing our understanding of the response of the

atmosphere to latent heat release from local to global scales. The

latent heat released in the tropics is a principal component of the

general circulation of the atmosphere of the earth. Unfortunately
accurate measurements of the rainfall in the tropics are practically

non-existent since most of the tropics is oceanic and, therefore, not

amenable to the usual land based rainfall measurement techniques. The

only alternative is to obtain the necessary rainfall measurements

through remote sensing.

Recently it has been proposed that radiometric measurements from
satellites could be used to estimate tropical rainfall on a global

scale. Unlike raingages, however, the radiometers do not measure

rainfall directly. Rather the rainfall must be inferred from brightness

temperatures (wilheit et al., 1977) measured at several frequencies.
But brightness temperatures are the result of several interactive

processes which include not only the desired upwelling radiation from

rain but also the scattering effect of ice lying between the rain and

the satellite. Although the essential physics of these proceses are

known, the detailed understanding required for translating brightness

temperatures into accurate estimates of rainfall needs refinement. For

the next several years, a great amount of effort must be expended in

the development of algorithms for estimating rainfall from satellite

radiometric measurements if the dream of global rainfall measurements

over the tropics is to become a reality.

The development of these algorithms, however, will require
rainfall measurements which can be used as a standard for comparison.

Although, in principle, a dense network of raingages might be
sufficient over land, the satellite radiometric measurements are best

suited for oceanic observations. It will, therefore, eventually be

necessary to use earth bound remote sensing techniques which can

provide measurements for rainfall intercomparisons over oceans.

2. Radar Parameters for Estimating Rainfall

Over the last several decades a number of radar sensing techniques

for rain measurements have been proposed. In total these methods

essentially exploit all the fundamental properties, namely frequency,

amplitude, phase, and polarization of electromagnetic waves scattered
in both the forward and backward directions. All of the measurable

quantities are proportional to averages over the drop size distribution

of different powers of the drop diameter (D).

The quantities of particular relevance to precipitation are rain
water content (W), which is proportional to the average D 3, and the

rainfall rate in still air (R o) which is nearly proportional to the

average D 3"6. For most of the remote sensing parameters, the rain mass

(either W or Ro) can only be estimated by interpolation between two or
more measurements associated with an average Dn where n#3 and #3.6.
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Such interpolations, however, require assumptions about the form of the
drop size distribution which, in general, is not known. It is well

known, however, that there can be extreme and often rapid random as

well as slower systematic variations in the drop size distribution.

This variability is likely at times to introduce significant errors in

rainfall estimates when using interpolations. In order to avoid the

effect of drop size distribution variability, it is preferable, if

possible, to measure parameters which are directly related either to W

or Ro .

There are only two parameters which are known to be directly
proportional to the drop size distribution average D 3. The first is

propagation differential phase shift at wavelengths greater than 2.2

cm. As a transmitted wave propagates through precipitation, which is

usually not spherical, the relative phase between the transmitted wave
and the forward scattered wave from each particle is shifted slightly

from zero. The shift also depends upon whether the polarization is
horizontal or vertical. The additon to the transmitted wave of the

forward scattered waves from all the particles causes the net

propagating wave to become more and more shifted in phase. The

difference between this phase shift for a horizontally polarized wave

from that for a vertically polarized wave is called the differential
propogation phase shift. It has been shown (Jameson 1985) that for

wavelengths greater than about 3 cm that the rate of change of this

quantity with increasing distance (range) from the radar (_HV) is
given by

_HV = C W (i - 8) (i)

where C is a constant dependent on the wavelength, W is the rain water

content, and _ is the mass weighted mean axis ratio of the raindrops
over the drop size distribution using the generally accepted oblate

approximation to actual raindrop shapes. Although _ is not known, it

can be approximated to within ±0.01 using B, the reflectivity weighted

mean axis ratio calculated from differential reflectivity (Jameson,

1983a).

Alternatively, if one could add rather than subtract the phase

shifts corresponding to each polarization, it has been shown (Jameson,

1987) that

_¢ = C W (2)

where Z¢ is the range rate of change of the summation of the two phase
shifts. Unlike _HV, the use of Z_ does not require estimating 8.

The important advantage of these two measurements (_HV and Z¢)
is that they are insensitive to variations in the drop size

distribution since both are the result of complete integration over the

drop size distribution regardless of its form.

The primary objective of the Phase I effort was to attempt to

measure Z@ using a polarization diversity radar in order to provide
better ground rainfall measurements for comparison with rainfall



estimates using satellite retrieval algorithms. In particular, it was
proposed to measure (_H+_V) as a function of range, where _H V are

0 ', ,

the propagation phase shifts at horizontal and vertlcal polarlzatlons,

respectively. As a result of this Phase I investigation, it appears,

however, that while (_H-_V) and, hence, _HV can be measured by radar
(Sachidananda and Zrnic', 1986b; Jameson and Hermant, 1987), (_H+_V)

and _ can not. These results are discussed in greater detail in the
next sectlon.

3. Phase I Investioation

3.1 The Radar Measurement of Z_

Initial theoretical work suggested that it should be possible to

measure Z_ using radar measurements of

argl(nHV ) = 2(_H+_V)I +2_(rl) +2_o + (6H+6V) 1 (3)

at increasing distances from the radar. Here _(r I ) is the phase change

due to the atmospheric index of refraction out to the range rI from the

radar, _o is the mean initial phase of the transmitted waves, (6H+6 v)
is the sum of the phase shifts produced during scattering, and

1 M

_HV = M- m=lZ [ EHH(t°-_)Evv(t°)Evv(t°)EHH(t°+_) ]m (4)

where EHH,VV are the backscattered co-polarized (identical polarization
of the received and the transmitted waves) signals, to is some initial

time, and _ is the time interval between pulses (the interpulse

period). By using EHH measured at ±_, the effect of the mean Doppler

velocity of the particles can be cancelled.

From (3) it follows that

(r2-rl)_(2¢) = arg2(HHV ) - argl(HHV ) (5a)

= 2[(_H+_V)2-(@H+¢V)I] +2[_(r2)-_(rl)]
(5b)

+ [(6H+6V)2-(6H+6V)I]

where _(_@) is the estimate of Z_. Since the 6 term is anticipated to
be much smaller than the ¢ term When the wavelength is large with

respect to the size of the raindrops (the so-called Rayleigh-Gans
scattering regime), all that is required to estimate Z@ is an accurate

measurement of the _ term. Analysis reveals, however, that the

electronic timing for setting the ranges of the data bins would have to
be accurate to within a few picoseconds (10 -12 sec) in order to

properly locate the bin position to within a few degrees. This accuracy
is not generally available in current radars.

A more serious limitation, however, was detected using numerical

simulations of the backscattering of waves from an ensemble of

raindrops, while waiting for completion of calibrations of the DFVLR
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(Deutsche Forchungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V.)
radar, numerical experiments were performed in which a small but
significant number of oblate raindrops were allowed to move according
to a Gaussian distribution of particle velocities having a non-zero
mean speed with respect to the radar. These experiments revealed that
while (_H-_V) could be measured and while the effect of the mean
Doppler velocity on estimates of (_H+_V) could indeed be removed as
anticipated, there remained an unexpected and apparently arbitrary
component of the phase. Expression (3) should be rewritten as

arg(HHV ) = 2(_H+_V) +2_(r) + 2_o + (6H+6V) (6)

where _(r) is the arbitrary phase at range r apparently due to a net
non-zero mean of phase position of the particles. Although this finding
requires confirmation using actual radar observations, at this time
there is no reason to believe that it is an artifact of the numerical
experiments.

By combining quantities and ignoring the 6 term with respect to
the other considerably larger terms, (6) can be rewritten as

arg(HHV ) = 2(¢H+¢V) +2_ (7)

This expression constitutes one equation with two unknowns. In order to

determine (_H+_V) is necessary and sufficient to find an additional

equation of the form

X = a(¢H+¢V) + b_, a#b (8)

Although superficially the task is straightforward, in reality it
is difficult to find a measurement with this form. To illustrate,

consider the technique of transmitting either horizontal or vertical

polarization while receiving the cross-polarized (the polarization of

the received wave is orthogonal to that transmitted) return signals.

The propagation phase shift of the cross-polarized wave is simply

(_H+_V) (eg., Jameson, 1985) so that a=l in (8). Unfortunately, since

this signal is produced by only one backscatter process b=l as well.

This approach, therefore, does not produce an equation which is

independent of (7).

More generally it appears that polarization measurements cannot

yield equations like (8). Since all elliptical polarizations are

produced by adding a horizontally and a vertically polarized component
with some phase shift, it follows that all backscattered elliptical

waves can similarly be decomposed into horizontally and vertically

polarized components. However, since each linear component has
undergone a phase shift identical to that as if it had been transmitted

independently of the other linear component, the results, as far as the

phase measurements are concerned, are identical to (7).

The only other way to try to produce a#b in (8) is to use
measurements at different frequencies. At a particular polarization

(horizontal or vertical) and at a particular wavelength k i (or

equivalently frequency), removal of the Doppler velocity component



(Jameson and Mueller, 1985; Sachidananda and Zrnic', 1986a) leaves the
phase of the backscattered wave given by

L qL4_ 2_p_.= ¢ + _. + + . + 6 (9)
l o l ki l i

where _o is the mean phase at transmission, _L i is the random net pha
of the distributed scatterers at distance L from the radar, q is the
mean index of refraction of the atmosphere along L, _Pi is the mean

propagation phase shift due to precipitation, and 8i is the mean phase

shift induced by backscattering. For wavelengths larger than about 2 cm

n is independent of frequency (eg., Hinkle, 1987), and most raindrops

will be Rayleigh-Gans scatterers so that _Pj = _Pi ki/kj, _Lj = _L i

ki/_ j, and 6i_6 j. It follows that

_.-# = ¢. 1 + 1 + 2_ p. 1 - - (i0)

i j I kj Xi Xj i kj

This equation contains 3 unknowns (_Li,_L,_Pi). It appears that by

using two other wavelengths kk, k I one could form a system of three

equations and, hence, solve for _Pi. Unfortunately because _i and kj
only appear as a coefficient in front of each term on the right-han_

side of (i0), the equations in such a system would not be independent

(only being multiples of each other). Although it is tempting to

consider using k< 2 cm in order to circumvent this situation (since

then _pj _ _Pi Ai/kj), _ will no longer depend upon D 3.

Consequently the unique relation between W and Z_ will be lost. It
appears, therefore, that radars are not capable of measuring z_.

3.2 The Measurement of Z_ Along a Microwave Link

Another possiblility might be to try to measure Z_ using a
microwave link. For one polarization, either horizontal or vertical,

let ¢ represent the phase angle measured at the microwave link receive

after propagating along the path of length L. Expression (9) may then
be simplified to

o qL2n¢. = ¢. + + ¢ (11)
1 1 ki 1

where the subscript i denotes different wavelengths, @o i is the
original phases at the moment of transmission, and _Pi is the phase

change induced by the precipitation. For k _ 2 cm the atmospheric index

of refraction (q) is nearly independent of frequency. Hence, by using

sufficiently long wavelengths and by using a common coherent reference

source for generating the transmissions at the selected harmonic

frequencies it follows from (ii) that

¢. - Cj = ¢. i + i - - + i - - (12)
1 i _j Ai Aj i Aj



This expression is exactly analagous to (i0). Therefore, for precisely
the same reasons that (i0) could not be used to measure z_, so (12) ca
not be used either. However, as shall be discussed in section 4.2, a
microwave link can still play an irreplacable role in rainfall
measurement.

4. Recommendations for Phase IT

4.1 Radar Measurements

It is recommended that the rate of propagation differential phase

shift (_HV) be used to estimate the rain water content (W) through the
relation (Jameson, 1985)

_HV
= (13)

C(I-_)

where w is in g m -3, _HV is in deg km -I (one-way), and C=0.1493 and

0.07857 for A=I0.71 and 5.45 cm, respectively. The mass weighted mean

axis ratio (_) can be replaced by the reflectivity (power) weighted
mean axis ratio B (Jameson, 1983a) to within an accuracy of ±0.01
(Jameson, 1985) from

-3/7 6/7
(14)

(Jameson, 1983a; 1987a) where

2

: (15a)

f<E E >I
HH VV

PL = (15b)

IE I IEvvl

EHH, EVV are the backscattered co-polarized waves corresponding to
horizontal and vertical polarizations, respectively, and * denotes

complex conjugation.

Although _HV provides a measure of W, it can also be used to

estimate the rainfall rate in still air (Ro) if the relationship

between drop size and axis ratio is known. Many such relationships

appear to be of the form r = a-bD (eg. Pruppacher and Beard, 1970;

Jameson, 1983b). In addition an analysis by Sekhon and Srivastava

(1970) revealed the simple relation



RO = 3.6 W Vo (16)

where Vo [ m sec -I] is the fall speed of the median volume drop size
over the ensemble of drops, W [g m-j] is the rain water content, and Ro
[mm hr -1] is the rainfall rate. Combining (13) and (16) it follows
that

3.6 _HV

_(Ro) = _(V) (17)
c (l-R)

where _(V) is an estimate of mass weighted mean velocity (v) which is

nearly identical to vo. Since v is a function of drop size, it can be
estimated by first determining the reflectivity weighted mean axis

ratio R calculated using (14). Combining R with the linear relation

between drop size and axis ratio, the reflectivity weighted mean drop
size can be determined. From the relationship between drop size and

terminal fall speed (Gunn and Kinzer; 1949)

_(Ro) =
3.6 _HV

C (l-R)
9.45 {l-exp[-6.6{(a-R)/b}]-

3[(a-R)/b]exp[-14{(a-R)/b}]ll

(18)

where the bracketed term is an analytic fit by FuJita to the Gunn and

Kinzer data, and a,b are constants equal to 1.03 and 0.62,

respectively, when the drops are equilibrium shaped (Pruppacher and

Pitter, 1971).

Measurement of _HV and _ require a radar capable of observations
at different polarizations (a so-called polarization diversity radar).
Such a radar has several advantages since it is then possible to

estimate W and R o by several different methods. For example,
Sachidananda and Zrnic' (1986b) suggest an alternative to (18) using

_HV and _ for estimating R o. In addition _ in combination with the
reflectivity factor (Z) can be used to produce another independent

estimate of R o (Seliga and Bringi, 1976). An additional estimate

combining _, Z, and PL can also be computed (Jameson, 1983b; Jameson
and Hermant, 1987). This redundency of techniques can be used to detect

suspicious estimates. For example, in a recent analysis (Jameson and
Hermant, 1987) of polarization data from the i0 cm Alberta Research

Council circularly polarized radar, melting small hail produced an
enhanced Z in conjunction with _ relatively close to unity.

Measurements of _HV were also extracted from the data using a new
technique (Jameson and Hermant, 1987). Estimates of R o and W using

and Z were found to be highly inflated with respect to values estimated

using _"HV which are independent of Z. Apparently the melting process
produced enhanced Z. Because _ was near unity and, hence, R as well,
the deduced mean drop size was probably underestimated. In order to

produce the observed Z, unnatural concentrations of raindrops were,

8



therefore, required. Hence, Ro and W were artifically inflated to
unrealistic values.

While the potential importance of _HV is becoming more apparent,
the best approach for measuring (_H-_V), from which _HV is derived,
remains to be determined. When using linear (horizontal and vertical)

polarizations, (_H-¢V) must be calculated from the cross-correlation

between vertically co-polarized (Evv) and horizontally co-polarized

(EHH) signals separated in time by one or more interpulse periods
(Jameson and Mueller, 1985; Sachidananda and Zrnic', 1986a) [One can

also derive (_H-#V) from simultaneous co- and cross-polarized signals
[Jameson, 1985), but in rain the cross-polarized signals will often be

very weak and, therefore, noisy.] During the interpulse period the

precipitation moves producing a change in the phases of the signals.

Although Jameson and Mueller (1985) and Sachidananda and Zrnic' (1986a)

argue that this phase shift can probably be eliminated after sufficient

averaging, for realistic finite sampling times there is likely still to

be some slight rsidual phase noise.

Using circular polarizations (_H-_V) can be estimated from
simultaneous measurements of the co- and cross-polarized signals

(Jameson and Hermant, 1987). Hence, the potential source of phase noise

from particle velocities is eliminated. In addition from circular

polarization measurements it appears possible to derive _ unbiased by

propagation effects (Bebbington et al., 1987; Jameson and Hermant,
1987).

Experiments, however, are required to determine which methods,
circular or linear, are best. This can be achieved by interweaving from

pulse to pulse nearly simultaneous linear and circular polarization

measurements. The only radar in the western world with this capability

is the 5.45 cm wavelength DFVLR radar operating in Oberpfaffenhofen,

Federal Republic of Germany. The P.I. is presently working with DFVLR
scientists. Although comparisons such as these were intended to be part

of the Phase I effort, the polarimetric switch on the DFVLR radar is

undergoing modification so that these measurements will not be possible

until 1988. It is recommended, therefore, that these investigations be
pursued during Phase II.

4.2 Microwave Link Measurements

The most important role of a microwave link is the measurement of

attenuation simultaneously at several frequencies. The attenuation

measurements provide information directly relevant to the
interpretation of scattering and emissivity of rain at the frequencies

proposed for satellite radiometric observations. Measurement at

multiple frequencies is not possible on any known single radar system

sampling the same volume simultaneously. Attenuation and phase

measurements along a microwave link can also provide several

simultaneous estimates of the rainfall rate in still air (Ro).

An obviously desirable measurement is the path integrated

attenuation (AL) at a frequency near 35 GHz. It has been argued (Atlas

and Ulbrich, 1977) that A L is directly proportional to R o. Since at



this frequency the attenuation by rain is so strong, AL at 35 GHz will
be particularly useful in cases of light rainfall. However, at this
frequency attenuation by water vapor is also significant with respect
to that arising at rainfall rates less than i0 mm hr -I (Hinkle, 1987).
The proper estimation of the component due to precipitation requires
some means for estimating the contribution due to water vapor. This is
perhaps best achieved by the inclusion of phase shift and attenuation
measurements at a frequency of 25.35 GHz (Hinkle, 1987). In the absence

of moderate rain, the difference in phase shift [or more precisely the

relative phase dispersion A_ij=¢j-¢i(ki/kj) ] between 25 GHz and the
smaller frequencies provides _ m_asure of-the path integrated water

vapor content (Hinkle, 1987). when moderate to heavy rain is also

occurring, then both the phase dispersion between two frequencies and
the attenuation at one frequency yield two equations with two unknowns

(Ro and the path integrated water vapor content). In a simplified form

(after Hinkle, 1987) these equations are

A = A (Ro) + A(vapor) (19a)

A_ = A_(Ro) + A_(vapor) (19b)

where A is the integrated attenuation along the path due to rain and to

water vapor and a_ is the phase dispersion between frequencies. The

procedure proposed by Hinkle (1987) is to estimate A(vapor) from

standard meteorological measurements and then to estimate R o from

(19a). Inserting this estimate of R o into (19b) yields an estimate of
the integrated water vapor along the path. With this estimate of water

vapor, A(vapor) can be adjusted and the whole process repeated until
stability is reached. Using more than one combination of frequencies it

should be possible to derive at least two different estimates of R o by
this procedure.

An alternative estimate of R o which is independent of the approach

described in (19) can be derived using (_H-_V) (Sachidananda and
Zrnic', 1986b). Differential phase shift can be measured by

simultaneously transmitting horizontally and vertically polarized

signals using two slightly separated frequencies at, say, 8 GHz. Rather

than estimating R o, (¢H-¢V) combined with an estimate of R o from (19)

to yield the mass weighted mean raindrop axis ratio (8) using (18)

(substituting _ for R), assuming that the drops are equilibium shaped.
This estimate of 8 can be used to monitor the magnitude of the effect

of shape on the attenuation and relative phase dispersion. It can also
be used to estimate a mass weighted mean drop diameter which can then

be compared with disdrometer measurements, if available.

In summary the advantages of a multiple frequency, dual

polarization microwave link are that it can provide several independent

or nearly independent simultaneous estimates of rainfall using

attenuation and phase measurements along the path. Since these
additional estimates involve different assumptions, fair confidence can

be placed on an estimate of R o if these different techniques yield the
same value. On the other hand, if the estimates differ, comparison with

raingage measurements should help to identify the most accurate

technique. By using a wide range of frequencies, measurements in

I0



rainfall rates from about 1 mm hr -I to greater than 100 mm hr -I should
be possible. Such a facility could provide a unique standard of

comparison for rainfall estimation techniques proposed for satellites.
It could also lead to the identification of suitable microwave link

techniques for monitoring rainfall for urban and agricultural

hydrological purposes more reliably and effectively than is possible

using an extensive and expensive network of raingages.

5. Summary of Findings and Recommendations

i. Finding: While the summation phase shift (_H+_V) cannot be

measured by radar, propagation differential phase shift can.

Propagation differential phase shift (#H-_V), therefore, provides a

drop size distribution independent estimate of the rain water content
and rainfall rate in still air. Estimates from (_H-¢V) can be

compared with alternative radar estimates which while more readily

measured are also affected by drop size distribution variability.

Recommendation: The development of propagation differential phase

shift for the radar monitoring of rainfall should be vigorously

pursued. This development must include research to identify the optimum

polarization (both circular and linear) techniques for estimating

(_H-_V) and comparisons with other radar estimation schemes. This is

best achieved by continued use of the unique DFVLR radar in
collaboration with DFVLR scientists.

2. Finding: A coherent multiple frequency, dual polarization microwave

link can provide a unique facility for increasing our understanding of

the potential and limitations of the remote sensing of rain. The

inclusion of many frequencies will permit several simultaneous
estimates of rainfall over a wide range of rainfall rates. Measurements

at frequencies proposed for use on satellites should provide data for

the development of improved radiometric rainfall algorithms. A bonus

provided by the additional frequencies is the capability for measuring

path integrated water vapor content.

Recommendation: A prototype microwave link for rainfall measurements

should be designed and built. The development of this facility could,

at a minimum, provide a unique standard of comparison for remote

sensing techniques such as those proposed for satellites and radars.
The best microwave link remote sensing techniques, when fully

developed, might also provide irreplacable hydrological information at

locations not readily amenable to raingage networks.
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